ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Sign up for ANS’s Nuclear Licensing & Regulation Certificate Course
The next opportunity to take part in the American Nuclear Society’s Nuclear 101 Certificate Course isn’t until the 2026 ANS Annual Conference at the end of May in Denver, Colo.
In the meantime, now is the perfect time for those looking to expand their knowledge of the nuclear sector to enroll in the Nuclear Licensing & Regulation Certificate Course.
Jungsook Clara Wren, Glenn A. Glowa
Nuclear Technology | Volume 133 | Number 1 | January 2001 | Pages 33-49
Technical Paper | Reactor Safety | doi.org/10.13182/NT01-A3157
Articles are hosted by Taylor and Francis Online.
Previous experimental work led to the development of a kinetic model that can be used to quantify iodine sorption behavior on a stainless steel surface. The kinetic model, based on the mechanism proposed in earlier work, consists of four chemical reactions. The model has reproduced the time-dependent adsorbed iodine concentration data on the coupons observed under various atmospheric conditions and different cycles of loading and purging. The iodine adsorption kinetics were then incorporated into a mass transport equation to simulate iodine sorption behavior from a flowing air stream through a length of stainless steel tubing. Discussed are the model, the simulation results, and their implications regarding the calibration of iodine transmission through long stainless steel sampling lines used for radiological monitoring of airborne iodine in a reactor containment building following an accident.