ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
ANS hosts an overview of its STEM resources
The American Nuclear Society recently hosted a webinar charting the programs and resources that the Society can provide to students, educators, and the public regarding nuclear science and technology education—with a particular focus on the K–12 space. The webinar, led by ANS senior manager of STEM programs Uchenna Ezibe, also provided updates on the progress and future of ANS STEM efforts.
Click here to watch the full webinar.
Jungsook Clara Wren, Glenn A. Glowa
Nuclear Technology | Volume 133 | Number 1 | January 2001 | Pages 33-49
Technical Paper | Reactor Safety | doi.org/10.13182/NT01-A3157
Articles are hosted by Taylor and Francis Online.
Previous experimental work led to the development of a kinetic model that can be used to quantify iodine sorption behavior on a stainless steel surface. The kinetic model, based on the mechanism proposed in earlier work, consists of four chemical reactions. The model has reproduced the time-dependent adsorbed iodine concentration data on the coupons observed under various atmospheric conditions and different cycles of loading and purging. The iodine adsorption kinetics were then incorporated into a mass transport equation to simulate iodine sorption behavior from a flowing air stream through a length of stainless steel tubing. Discussed are the model, the simulation results, and their implications regarding the calibration of iodine transmission through long stainless steel sampling lines used for radiological monitoring of airborne iodine in a reactor containment building following an accident.