ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
K. Natesan, O. K. Chopra, T. F. Kassner
Nuclear Technology | Volume 28 | Number 3 | March 1976 | Pages 441-451
Technical Paper | Reactor | doi.org/10.13182/NT76-A31525
Articles are hosted by Taylor and Francis Online.
Kinetics of decarburization of Fe—2¼ wt% Cr— 1 wt% Mo steel in a sodium environment has been studied at temperatures between 480 and 650°C in the normalized and normalized-tempered conditions. Carbon concentration-distance profiles were obtained as a function of sodium exposure time and decarburization rate constants were evaluated. It was found that the heat treatment of the steel had no effect on the decarburization behavior at 650ºC; however, at lower temperatures, the normalized steel was found to decarburize significantly faster than the steel in the normalized-tempered condition. Microstructural examinations of specimens exposed at 650°C revealed that MeC was the stable carbide, and the transformation of M23C6 to M6C was accelerated by the decarburization process. In specimens exposed at 480°C, the stable carbides were found to be M7C3, Fe3C, and M2C. The results also showed that the steel would decarburize to a certain carbon level that corresponds to a stable carbide structure at each temperature, and any additional decarburization will be controlled by the dissolution rate of the carbide phases in the ferrite matrix.