ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
P. Grillo, G. Mazzone
Nuclear Technology | Volume 15 | Number 1 | July 1972 | Pages 25-35
Technical Paper | Reactor | doi.org/10.13182/NT72-A31159
Articles are hosted by Taylor and Francis Online.
Single- and two-phase pressure drop measurements have been carried out on a 6 × 6 rod bundle at 70 atm. Single-phase measurements have been performed with a subcooling ranging from 100 to 5°C and at mass velocities comprised between 0.5 × 106 and 3.3 × 106 lb/(h ft2). Two-phase measurements have been performed at steam qualities ranging from 3 to 20% and at mass velocities comprised between 0.5 × 106 and 2 × 106 lb/(h ft2). From the measured pressure drops, the bundle friction factor and the loss coefficient for each bundle component (bottom plate, spacer, and upper plate) have been determined. Single-phase results show that Moody’s curve for friction losses and Kays’ coefficients for form losses lead to predicted pressure drops in good agreement with the experimental ones. The two-phase loss coefficients of the spacer and the bottom plate have been compared to the slip model prediction. If, for each component, an ad hoc choice of the slip ratio is made, the calculated values can be matched to the experimental ones with good accuracy. In addition, two-phase friction losses have been calculated on the basis of the Martinelli-Nelson, Becker, and Baroczy correlations with a resulting good agreement between the predictions of the last correlation and the experimental data.