ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Michael C. Baker, Riccardo Bonazza
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 40-51
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT99-A2931
Articles are hosted by Taylor and Francis Online.
An experimental apparatus for investigating the injection of nitrogen gas and water into the base of a steel tank containing molten tin has been developed. A first set of experiments based on only gas injection has been used to develop a diagnostic technique using continuous high-energy X rays and digital imaging to observe the mixing process and to measure local and average void fractions in the test section as a function of time and space. This unique application of real-time, high-energy, X-ray imaging has been used to generate two-dimensional mappings of the chordal-average void fraction with spatial resolution corresponding to a 0.43-mm2 cross-sectional area perpendicular to the X-ray path and time resolutions of <5 ms. Void fraction measurements with superficial gas injection velocities from 0.07 to 0.14 m/s into a 0.08-m-deep pool of 683 K molten tin indicate that the time and spatial average integral void fraction at these gas injection rates is relatively constant, in the range from 0.26 to 0.31. Similar injections into pools of 0.14- and 0.15-m depths have also exhibited relatively constant average integral void fractions in the range from 0.18 to 0.26. These values are in good agreement with past integral experimental measurements in mercury, Wood's metal, and molten steel.