ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Jungsook Clara Wren, Will Long, Chris J. Moore, Keith R. Weaver
Nuclear Technology | Volume 125 | Number 1 | January 1999 | Pages 13-27
Technical Paper | Reactor Safety | doi.org/10.13182/NT99-A2929
Articles are hosted by Taylor and Francis Online.
The performance of charcoal filters for removing radioiodine from airstreams has been studied under conditions associated with routine reactor operations, as well as under conditions expected following an accident. These studies have led to the development of a physical model that can predict the time-dependent behavior of iodine release from triethylenediamine (TEDA)-impregnated charcoal filters under postaccident conditions. The charcoal filter model and the experimental studies performed to obtain appropriate values for the parameters used in the model are described.The model is a one-dimensional mass balance equation that includes convection, diffusion, and adsorption-desorption processes. The adsorption-desorption kinetics for CH3I on TEDA-impregnated charcoal is based on a two-step process: physical adsorption on the charcoal surface followed by chemisorption on TEDA impregnants, the rate of this chemisorption depending on the concentration of the physically adsorbed CH3I. Experiments were performed to determine the temperature and relative humidity dependences of the parameters used in the model, i.e., the adsorption and desorption rate constants and adsorption capacities. For a given charcoal, it was assumed that the rate constants depend only on temperature, whereas the adsorption capacities depend only on relative humidity. The observed rate constants for the physical and chemical adsorption and desorption processes all show Arrhenius temperature dependences. The observed dependence of adsorption capacity on relative humidity is consistent with the assumption that the adsorption sites are reduced as a result of capillary condensation. The full CH3I breakthrough curves, calculated using the model, reproduced the experimental data very well, supporting the assumption of a two-step adsorption-desorption mechanism. Some of the simulation results are also presented.