ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Uwe Kasemeyer, Jean-Marie Paratte, Peter Grimm, Rakesh Chawla
Nuclear Technology | Volume 122 | Number 1 | April 1998 | Pages 52-63
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT98-A2850
Articles are hosted by Taylor and Francis Online.
The large quantities of reactor-grade (RG) and weapons-grade (WG) Pu accumulated worldwide could be reduced by employing 100% mixed-oxide (MOX) cores in light water reactors. The buildup of new Pu from the U present in the MOX, however, remains disadvantageous from the viewpoint of inventory reduction and also enhances the need for multiple recycling. A more effective way would be to use U-free fuel so that no new Pu is produced.A comparison is made, from the physics design viewpoint, between the potential and the possible difficulties for two different types of Pu-burning pressurized water reactor cores, namely, 100% MOX and 100% uranium-free Pu fuel. The latter employs ZrO2 as inert matrix and Er2O3 as burnable poison. In each case, RG and WG Pu have been considered separately. The characteristics of the four different cores have been studied on the basis of three-dimensional calculations for an equilibrium cycle, a real-life UO2-fueled core being considered as reference for comparison purposes.For all four Pu-burning cases, it appears possible to design a four-region core with a natural cycle length of more than 300 days. For the 100% MOX cores, the Pu mass is reduced during irradiation by ~35% of the initial Pu inventory. For the U-free cores, the consumption is about twice as much, i.e., ~60% for the RG-Pu fuel and over 70% for the WG-Pu core. The reactivity balance in going from hot full power to hot zero power conditions shows that while the 100% MOX core with RG Pu would need more effective control rods, both types of U-free cores have larger shutdown margins than the reference case. Consideration of the reactivity coefficients indicates that a steam-line-break accident could be more problematic in the MOX core with RG Pu than in the other cases. The rod ejection transient should be safe because the maximum inserted worth of a control rod is ~0.5 $. More detailed investigations of transient behavior - particularly for the U-free cores - are needed, the current study having considered feasibility mainly from the viewpoint of static physics considerations.