ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Uwe Kasemeyer, Jean-Marie Paratte, Peter Grimm, Rakesh Chawla
Nuclear Technology | Volume 122 | Number 1 | April 1998 | Pages 52-63
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT98-A2850
Articles are hosted by Taylor and Francis Online.
The large quantities of reactor-grade (RG) and weapons-grade (WG) Pu accumulated worldwide could be reduced by employing 100% mixed-oxide (MOX) cores in light water reactors. The buildup of new Pu from the U present in the MOX, however, remains disadvantageous from the viewpoint of inventory reduction and also enhances the need for multiple recycling. A more effective way would be to use U-free fuel so that no new Pu is produced.A comparison is made, from the physics design viewpoint, between the potential and the possible difficulties for two different types of Pu-burning pressurized water reactor cores, namely, 100% MOX and 100% uranium-free Pu fuel. The latter employs ZrO2 as inert matrix and Er2O3 as burnable poison. In each case, RG and WG Pu have been considered separately. The characteristics of the four different cores have been studied on the basis of three-dimensional calculations for an equilibrium cycle, a real-life UO2-fueled core being considered as reference for comparison purposes.For all four Pu-burning cases, it appears possible to design a four-region core with a natural cycle length of more than 300 days. For the 100% MOX cores, the Pu mass is reduced during irradiation by ~35% of the initial Pu inventory. For the U-free cores, the consumption is about twice as much, i.e., ~60% for the RG-Pu fuel and over 70% for the WG-Pu core. The reactivity balance in going from hot full power to hot zero power conditions shows that while the 100% MOX core with RG Pu would need more effective control rods, both types of U-free cores have larger shutdown margins than the reference case. Consideration of the reactivity coefficients indicates that a steam-line-break accident could be more problematic in the MOX core with RG Pu than in the other cases. The rod ejection transient should be safe because the maximum inserted worth of a control rod is ~0.5 $. More detailed investigations of transient behavior - particularly for the U-free cores - are needed, the current study having considered feasibility mainly from the viewpoint of static physics considerations.