ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
G. Rimpault, Ph. Darde, F. Mellier, R. Dagan, M. Schikorr, A. Weisenburger, D. Maes, V. Sobolev, B. Arien, D. Lamberts, D. De Bruyn, A. C. Mueller, J. L. Biarrotte
Nuclear Technology | Volume 184 | Number 2 | November 2013 | Pages 249-260
Technical Paper | Accelerators | doi.org/10.13182/NT12-75
Articles are hosted by Taylor and Francis Online.
The development of accelerator-driven systems (ADSs) is motivated by the potential of these machines to reduce the volume and the radiotoxicity of accumulated nuclear waste, more particularly that of minor actinides currently generated by the operation of existing pressurized water reactors. The reduction of both volume and radiotoxicity of nuclear waste is achieved by transmutation and fission of minor actinides into less-active isotopes or shorter-lived by-products.Various technical challenges exist regarding designing reliable and efficient ADSs. The key points are very much linked to the design of the spallation module, the assurance that reactivity remains below criticality under any circumstances, and the accelerator reliability.This paper addresses the latter two challenges imposed on the accelerator in order to assure safe and reliable ADS operation. It discusses the possibility of performing online absolute reactivity measurements and the limits in the number of allowable accelerator beam trips, which might impede plant integrity and/or plant efficiency.