ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hans J. Wingender
Nuclear Technology | Volume 39 | Number 1 | June 1978 | Pages 18-24
Nuclear Safety Analysis | Energy Modeling and Forecasting / Radioactive Waste | doi.org/10.13182/NT78-A17003
Articles are hosted by Taylor and Francis Online.
Within the scope of a system study,“Radioactive Wastes in the Federal Republic of Germany,” performed from 1974 through 1976, the questions of risk assessment were investigated. A risk analysis of a high-level waste (HLW) management system was performed. The results of the HLW tank storage are that the risk expectation value is 700 nJ/kg × RBE (7 × 10−5 rem) per year for atmospheric release. The discussion of the main contributing accidents shows the possibility of reducing the risk by technical means. A qualitative comparison on a release basis with the results of the WASH-1400 report shows significant differences that can be explained by the different methodologies applied. The risk analysis activities have led to a comprehensive risk assessment project, which was recently started. The project includes research and development tasks concerning nuclide migration and transport to the ecosphere, nuclide mobilization by various mechanisms, methodology problems, data collection, computer code development, as well as risk analyses of waste management facilities. It is intended to round off the project with risk analyses of spent fuel element transport, storage, and reprocessing.