ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
C. M. Sommer, W. M. Stacey, B. Petrovic, C. L. Stewart
Nuclear Technology | Volume 182 | Number 3 | June 2013 | Pages 274-285
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A16979
Articles are hosted by Taylor and Francis Online.
Fuel cycle analyses of the transmutation of (a) all of the transuranics (TRUs) in light water reactor (LWR) spent nuclear fuel (SNF) and of (b) the minor actinides (MAs) remaining in SNF (after separation of much of the plutonium for starting up fast reactors) have been performed for the conceptual subcritical advanced burner reactor (SABR) fission-fusion hybrid sodium-cooled fast burner reactor. Both metallic and oxide burner reactor fuels were considered, and the effect of clad radiation damage limit on fuel residence time was investigated. For a radiation damage limit of 200 displacements per atom, the support ratio (LWR power/SABR power) for transmuting all of the TRUs produced by LWRs is 3/1, and for transmuting just the MAs produced by LWRs the support ratio is 25/1. The reduction in high-level waste repository capacity required due to this transmutation is a factor of 10, based on a decay heat at a 100 000-yr limit on capacity.