ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
Liangxing Li, Shengjie Gong, Weimin Ma
Nuclear Technology | Volume 177 | Number 1 | January 2012 | Pages 107-118
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13331
Articles are hosted by Taylor and Francis Online.
This paper documents an experimental study on two-phase flow regimes and frictional pressure drop characteristics in a particulate (porous) bed packed with multidiameter (1.5-, 3-, and 6-mm) glass spheres. The experimental results provide new data to validate/develop hydrodynamic models for coolability analysis of debris beds formed in fuel-coolant interactions during a postulated severe accident. The POMECO-FL test facility is employed to perform the experiment, with the spheres packed in a test section of 90 mm diameter and 635 mm height. The pressure drops are measured for air/water two-phase flow through the packed bed, and flow patterns are obtained by means of visual observations. Meanwhile, local void fraction in the center of the bed is measured by a microconductive probe.The experimental results show that the frictional pressure drop of single-phase flow through the bed can be predicted by the Ergun equation, if the area mean diameter of the particles is chosen in the calculation. Given the so-determined effective particle diameter, the estimation of the Reed model for two-phase flow pressure gradient in the bed has a good agreement with the experimental data. The characteristics of the local void fraction can be used to predict flow pattern and mean void fraction. It is observed that slug flow prevails when the mean void fraction is <0.5, whereas annular flow dominates after the mean void fraction is >0.7. If the effective particle diameter is further used as an influential parameter in flow pattern identification, the observed flow regimes of two-phase flow in porous media are well predicted by the existing flow pattern map.