ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
Chul Hee Min, Han Rim Lee, Chan Hyeong Kim
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 11-15
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12262
Articles are hosted by Taylor and Francis Online.
In proton therapy, accurate verification of in vivo dose distribution is necessary to ensure not only the safety of the patient but also the success of the treatment itself. It has been shown, both by Monte Carlo simulations and by limited experiments, that the proton beam range in a patient can be accurately determined by measuring the distribution of the prompt gammas generated from proton-induced nuclear interactions. In the present study, a two-dimensional (2-D) prompt gamma detection system incorporating a 51 (longitudinal) × 21 (lateral) detector array was designed and tested by Monte Carlo simulations using the MCNPX code. Additionally, the detection probability of the prompt gammas per primary proton was calculated for different proton energies. Despite the increase of the beam dispersion effect and background gammas with the increase of the proton energy, our simulation results clearly showed that it is possible to measure the 2-D distribution of prompt gammas up to 150 MeV using the 2-D prompt gamma detection system.