ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
Douglas L. Porter, Conor B. Hilton
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 218-225
Technical Note | Fuel Cycle and Management | doi.org/10.13182/NT11-A11551
Articles are hosted by Taylor and Francis Online.
Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the United States, both metal and mixed oxide (MOX) fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650, and 700°C were used as goal temperatures. Fuel-cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MW(thermal) fast reactor design, raising the outlet temperature to 650°C through pin power increase raised the MOX centerline temperature to more than 3300°C and the metal fuel peak cladding temperature to more than 700°C. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design "fixes," such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. Although some of these are costly, the benefits of having a high-temperature reactor that can support hydrogen production, or other missions requiring high process heat, may justify the extra costs.