ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Hee-Chul Yang, Hee-Chul Eun, Yung-Zun Cho, Han-Soo Lee, In-Tae Kim
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 300-305
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT10-A10865
Articles are hosted by Taylor and Francis Online.
A fundamental study on the distillation rate on LiCl-KCl eutectic salt under different vacuums from 66 to 6600 Pa (0.5 to 50 mm Hg) was performed by using both a nonisothermal and an isothermal thermogravimetric (TG) analysis. Based on the nonisothermal TG data, distillation rate equations as a function of the temperature could be derived. Calculated flux by these model flux equations was in agreement with the distillation rate obtained from isothermal TG analysis. A salt distillation operation with a moderated distillation rate of 10-4 to 10-5 molcm-2s-1 is possible at temperatures of <1300 K and vacuums of 660 to 6600 Pa. An [approximately]99% salt distillation efficiency was obtained after 1 h at a temperature above 1150 K under 6600 Pa. An increase in the vaporizing surface area is relatively effective for removing residual salt in the remaining particles, when compared to that for the vaporizing time. More than 99.95% of total distillation efficiency was obtained for a 1-h distillation operation by increasing the inner surface area from 4.52 to 12.56 cm2 (about 3 times increase).