ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
TEPCO releases initial analysis of Fukushima-2 fuel debris sample
Tokyo Electric Power Company has released the results of its initial analysis of a sample of nuclear fuel debris from Unit 2 of Japan’s damaged Fukushima Daiichi nuclear power plant. The sample, which measured around 5mm by 4mm and totaled 0.187 grams, was taken from the floor of the reactor pedestal during a second trial removal of fuel debris conducted in April.
X. Cheng, N. I. Tak
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 229-236
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT158-229
Articles are hosted by Taylor and Francis Online.
Computational fluid dynamics (CFD) analysis is carried out for heat transfer of lead-bismuth eutectic flows in rod bundles. The effect of different parameters, such as turbulence models, on the numerical results is investigated. The effect of meshes on the heat transfer is much smaller when using the [curly epsilon]-type turbulence models than when using the -type turbulence models. Based on the results achieved, the Reynolds stress model of Speziale with fine-mesh structures, i.e., y1+ 15, is recommended for further CFD analysis of heavy liquid-metal (HLM) flows in rod bundles. A strong circumferential nonuniformity of heat transfer is observed in tight rod bundles, especially in square lattices. The secondary flow leads to a reduction in the nonuniformity of heat transfer. Related to the overall average Nusselt number, CFD codes give similar results for both triangular and square rod bundles when the Peclet number and the pitch-to-diameter ratio have the same values in both bundle configurations. Comparison of the CFD results with bundle test data in mercury clearly indicates that the turbulent Prandtl number for HLM flows in rod bundles is smaller than that in circular tubes. It has values close to 1.0 at high Peclet number conditions and increases by decreasing Peclet number.