ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Air Force issues notice to partner with Oklo on microreactor deployment in Alaska
The U.S. Department of Air Force has announced its notice of intent to award advanced nuclear technology company Oklo a contract to pilot a microreactor at Eielson Air Force Base in Alaska.
Vaclav Dostal, Pavel Hejzlar, Michael J. Driscoll
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 283-301
Technical Paper | Fission Reactors | doi.org/10.13182/NT06-A3734
Articles are hosted by Taylor and Francis Online.
This paper consists of three parts. The first part presents a mostly thermodynamic comparison of the supercritical carbon dioxide (S-CO2) cycle to helium Brayton, superheated steam, and supercritical steam cycles. Issues that contribute to plant cost are discussed. The second part presents an economic comparison of a gas-cooled reactor coupled to S-CO2 direct, helium Brayton direct, and superheated steam indirect cycles. The results indicate savings of up to 30% if the steam indirect cycle is replaced with the direct S-CO2 cycle. Compared to the helium direct cycle, the savings can reach 15%. The third part describes the optimization and potential of the indirect S-CO2 cycle and the effect of reheating. The indirect cycles of helium to S-CO2 and lead bismuth to S-CO2 are studied to assess the performance of gas-to-gas and liquid metal or liquid salt indirect cycles, respectively. It is shown that although the indirect cycle of helium to S-CO2 is feasible, it poses challenges in the intermediate heat exchanger design and suffers efficiency losses due to the large power consumption of the main circulators. Gas indirect cycles are well suited for liquid metal or liquid salt reactors. Further, the study indicates that employing reheat is economically unattractive for the indirect cycle of helium to S-CO2 because of efficiency reduction from pressure losses in reheaters and interconnecting ducting and additional capital cost. A similar conclusion was also reached for the indirect cycles of liquid metal or liquid salt to S-CO2 even though pumping power is very small. This is because of the additional cost of an intermediate liquid metal (or liquid salt) loop, which needs to be added since it is not possible to place all heat exchangers for reheat inside the reactor vessel.