ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Charles Forsberg
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 191-204
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A14633
Articles are hosted by Taylor and Francis Online.
Fuel cycles have not historically been integrated with repository design. Four alternative combinations of fuel cycles and repository systems are assessed in the present work: (a) traditional repositories, (b) repositories with spent nuclear fuel retrievability for recycle or as insurance against unforeseen repository failure, (c) colocation and integration of reprocessing and repositories, and (d) colocated specialized disposal facilities such as boreholes for different wastes. System design choices have major impacts on fuel cycle economics, accident risk, repository performance, nonproliferation, and repository siting. Consequently, there are large incentives to understand the different ways to couple fuel cycles and repositories.The evidence suggests that a repository as only a disposal site (the current system) is the least desirable option given current requirements for the United States. There are large incentives to develop repository sites that colocate and integrate all back-end fuel cycle facilities with the repository - independent of the fuel cycles that are ultimately chosen or how these fuel cycles evolve over time. Colocation and integration change the interface requirements between facilities by eliminating many storage and transport requirements such as the need for waste forms with high waste loadings. That, in turn, can result in reductions in cost, reductions in risk, and improved repository performance. For closed fuel cycles, colocation and integration may eliminate repository safeguards. This also suggests a repository business model similar to that of many airport authorities. Airport authorities manage the runways with colocated public and private airline terminals, aircraft maintenance bases, and related operations - all enabled and benefiting from the high-value runway asset. The common high-value back-end fuel cycle asset is the repository. For the local community and state government, such a strategy couples back-end fuel cycle benefits (high-technology jobs, tax revenue, etc.) with the repository site.