ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Charles Forsberg
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 191-204
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A14633
Articles are hosted by Taylor and Francis Online.
Fuel cycles have not historically been integrated with repository design. Four alternative combinations of fuel cycles and repository systems are assessed in the present work: (a) traditional repositories, (b) repositories with spent nuclear fuel retrievability for recycle or as insurance against unforeseen repository failure, (c) colocation and integration of reprocessing and repositories, and (d) colocated specialized disposal facilities such as boreholes for different wastes. System design choices have major impacts on fuel cycle economics, accident risk, repository performance, nonproliferation, and repository siting. Consequently, there are large incentives to understand the different ways to couple fuel cycles and repositories.The evidence suggests that a repository as only a disposal site (the current system) is the least desirable option given current requirements for the United States. There are large incentives to develop repository sites that colocate and integrate all back-end fuel cycle facilities with the repository - independent of the fuel cycles that are ultimately chosen or how these fuel cycles evolve over time. Colocation and integration change the interface requirements between facilities by eliminating many storage and transport requirements such as the need for waste forms with high waste loadings. That, in turn, can result in reductions in cost, reductions in risk, and improved repository performance. For closed fuel cycles, colocation and integration may eliminate repository safeguards. This also suggests a repository business model similar to that of many airport authorities. Airport authorities manage the runways with colocated public and private airline terminals, aircraft maintenance bases, and related operations - all enabled and benefiting from the high-value runway asset. The common high-value back-end fuel cycle asset is the repository. For the local community and state government, such a strategy couples back-end fuel cycle benefits (high-technology jobs, tax revenue, etc.) with the repository site.