ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Andrew G. Buchan, Adam S. Candy, Simon R. Merton, Christopher C. Pain, Justin I. Hadi, Matthew D. Eaton, Anthony J. H. Goddard, Richard P. Smedley-Stevenson, Gregory J. Pearce
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 105-121
Technical Paper | doi.org/10.13182/NSE08-82
Articles are hosted by Taylor and Francis Online.
This paper presents a new multiscale radiation transport method based on a Galerkin finite element spatial discretization of the Boltzmann transport equation. The approach incorporates a discontinuous subgrid scale (SGS) solution within the continuous finite element representation of the spatial variables. While the conventional discontinuous Galerkin (DG) method provides accurate and numerically stable solutions that suppress unphysical oscillations, the number of unknowns is relatively high. The key advantage of the proposed SGS approach is that the solutions are represented within the continuous finite element space, and therefore, the number of unknowns compared with DG is relatively low.The applications of this method are explored using linear finite elements, and some of the advantages of this new discretization over standard Petrov-Galerkin methods are demonstrated. The numerical examples are chosen to be demanding steady-state mono-energetic radiation transport problems that are likely to form unphysical oscillations within numerical scalar flux solutions. The numerical examples also provide evidence that the SGS method has a thick diffusion limit. This method is designed to work under arbitrary angular discretizations, so solutions using both spherical harmonics and discrete ordinates are presented.