ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Paolo Bianchini, Manuele Aufiero, Francesco Di Lecce
Nuclear Science and Engineering | Volume 197 | Number 12 | December 2023 | Pages 3022-3034
YMSR Paper | doi.org/10.1080/00295639.2023.2219818
Articles are hosted by Taylor and Francis Online.
Fuel channel flow blockage is a postulated accident scenario in graphite-moderated molten salt reactors (MSRs), caused by debris partially obstructing the flow in a hole inside a graphite moderator brick. This obstruction produces an increase in the fuel salt bulk temperatures in the blocked channel, resulting in a significant fraction of the deposited fission power being conducted through graphite from the blocked channel to the surrounding unblocked channels. In the blocked channel, a combination of forced convection and natural convection takes place, the latter being dominant at very strong flow rate reductions. At full blockage (with the fragment completely obstructing the flow), because of the poor thermal conductivity of fuel salt, correct estimation of the natural convection impact on heat transfer between the channel bulk and the walls is fundamental to determine whether boiling conditions are reached in the blocked channel. The proposed assessing approach, developed in collaboration with ThorCon in the frame of the ThorCon reactor core design and optimization, is presented in this work. Results from a case study based on the molten salt breeder reactor (MSBR) design and operating conditions are presented and discussed. These analyses show that with respect to full blockage accidents in other reactor types, the consequences of full channel blockage accidents in graphite-moderated MSRs are milder. For graphite-moderated MSRs, the main mechanical limits during the accident arise in thermal stresses in the graphite brick. Graphite thermal and mechanical properties, namely, bulk modulus, thermal expansion coefficient, ultimate strength, and thermal conductivity, are severely impacted by neutron irradiation through the life of the graphite. All these effects are taken into account in the current analysis and are discussed in the present work.