ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Muhammad Rizki Oktavian, Ugur Mertyurek, Yunlin Xu
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2072-2085
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2162790
Articles are hosted by Taylor and Francis Online.
Current plans and efforts of reactor operators and vendors to include extended-enrichment (EE) fuel and accident-tolerant fuel (ATF) in current reactor fleets motivate the study of these changes in reactor physics analysis. This work uses the U.S. Nuclear Regulatory Commission’s core simulator PARCS to do the core calculation and the SCALE Polaris lattice physics code to generate the homogenized, few-group constants. In this work, both pressurized water reactor and boiling water reactor (BWR) colorset models are used to verify the proposed approach. The accuracy presented in the colorset models verified the capability of the PARCS/Polaris procedures for the transition core analysis in light water reactors. For the whole-core calculation, the ATF and EE-ATF transition core models were incorporated, in addition to the nominal core model. The BWR model was chosen to represent the entire core calculation due to its challenging design. The core parameters studied are the core power distribution, power peaking factor, Doppler temperature coefficients, and control rod worth at cold zero power and hot full power. When the core parameters of the transition cores are compared with those of the nominal core in PARCS, the results suggest that there is no drastic change in the core parameters for the implementation of ATF and EE fuels.