ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
David Friant, David Bernard, Patrick Blaise
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1991-2006
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2158679
Articles are hosted by Taylor and Francis Online.
The Doppler coefficient represents the primary source of passive and instantaneous negative reactivity feedback to limit peak power excursion during reactivity-initiated accidents as well as a nonnegligible negative reactivity source that changes between cold zero-power and hot zero-power conditions. Furthermore, the mechanism behind the Doppler coefficient may also contribute to an increase in the buildup of Pu under normal operating conditions. As such, its treatment is critical in the design and evaluation of the safety and control of nuclear systems. This paper provides a brief overview of the physical source of the Doppler effect through resonance broadening from first principles as well as an exploration of some recent developments in the treatment of elastic scattering in the Monte Carlo codes Tripoli4® and MCNP. This exploration results in a detailed look at the effect different elastic scattering kernels have on the radiative capture, fission, and elastic scattering rates as they directly tie into the calculation of the Doppler coefficient via the six-factor formula. Also provided is some insight into the propagation of the a priori uncertainty of 238U resonance parameters. This work is performed pursuant to the development of a new experimental program to measure the Doppler coefficient in a zero-power reactor both more accurately and to higher temperatures (1500°C to 2000°C) than has been done in the past at the MINERVE facility at Cadarache.