ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
David Friant, David Bernard, Patrick Blaise
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1991-2006
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2158679
Articles are hosted by Taylor and Francis Online.
The Doppler coefficient represents the primary source of passive and instantaneous negative reactivity feedback to limit peak power excursion during reactivity-initiated accidents as well as a nonnegligible negative reactivity source that changes between cold zero-power and hot zero-power conditions. Furthermore, the mechanism behind the Doppler coefficient may also contribute to an increase in the buildup of Pu under normal operating conditions. As such, its treatment is critical in the design and evaluation of the safety and control of nuclear systems. This paper provides a brief overview of the physical source of the Doppler effect through resonance broadening from first principles as well as an exploration of some recent developments in the treatment of elastic scattering in the Monte Carlo codes Tripoli4® and MCNP. This exploration results in a detailed look at the effect different elastic scattering kernels have on the radiative capture, fission, and elastic scattering rates as they directly tie into the calculation of the Doppler coefficient via the six-factor formula. Also provided is some insight into the propagation of the a priori uncertainty of 238U resonance parameters. This work is performed pursuant to the development of a new experimental program to measure the Doppler coefficient in a zero-power reactor both more accurately and to higher temperatures (1500°C to 2000°C) than has been done in the past at the MINERVE facility at Cadarache.