ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
David Friant, David Bernard, Patrick Blaise
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1991-2006
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2158679
Articles are hosted by Taylor and Francis Online.
The Doppler coefficient represents the primary source of passive and instantaneous negative reactivity feedback to limit peak power excursion during reactivity-initiated accidents as well as a nonnegligible negative reactivity source that changes between cold zero-power and hot zero-power conditions. Furthermore, the mechanism behind the Doppler coefficient may also contribute to an increase in the buildup of Pu under normal operating conditions. As such, its treatment is critical in the design and evaluation of the safety and control of nuclear systems. This paper provides a brief overview of the physical source of the Doppler effect through resonance broadening from first principles as well as an exploration of some recent developments in the treatment of elastic scattering in the Monte Carlo codes Tripoli4® and MCNP. This exploration results in a detailed look at the effect different elastic scattering kernels have on the radiative capture, fission, and elastic scattering rates as they directly tie into the calculation of the Doppler coefficient via the six-factor formula. Also provided is some insight into the propagation of the a priori uncertainty of 238U resonance parameters. This work is performed pursuant to the development of a new experimental program to measure the Doppler coefficient in a zero-power reactor both more accurately and to higher temperatures (1500°C to 2000°C) than has been done in the past at the MINERVE facility at Cadarache.