ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Jiaqi Chen, Caleb S. Brooks
Nuclear Science and Engineering | Volume 197 | Number 5 | May 2023 | Pages 886-906
Technical Paper | doi.org/10.1080/00295639.2022.2103347
Articles are hosted by Taylor and Francis Online.
The axial-flow centrifugal bubble separator designed for the gaseous fission product removal system in liquid-fueled molten salt reactors is simulated using the Eulerian two-fluid model coupled with the Adaptive Multiple Size Group method to account for the significant coalescence and breakup in the bubble separator. The behavior of the gas core in the bubble separator is mimicked by the symmetric interfacial area concentration model. The separator efficiency, local velocity, and pressure profiles at various conditions are compared with experimental data. Good agreement is found between the experiment and the simulation for the separator efficiency. With the coalescence and breakup being accounted for, the effect of the inlet void fraction on the separator efficiency is correctly captured. For the local pressure and velocity profiles, the agreement is only quantitative due to the simplifications on the geometry and potential limitations of the current computational fluid dynamics models. As good agreement is found for the separator efficiency, the sensitivity study is performed for various operational and design parameters with further simplified two-dimensional axisymmetric simulation.