ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Anil K. Prinja, Patrick F. O’Rourke
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 189-211
Technical Paper | doi.org/10.1080/00295639.2022.2087830
Articles are hosted by Taylor and Francis Online.
The stochastic theory of neutron transport is extended to describe the cumulative distribution of fission numbers and deposited fission energy in a subvolume of a multiplying assembly. Solutions for the probability distributions are obtained using analytical approximations and Monte Carlo simulation in lumped geometry and in symmetric homogeneous and heterogeneous spheres. The results show the development of a power-law tail in the steady-state fission number and deposited energy distributions when the medium is critical, independent of the fission neutron multiplicity distribution and domain heterogeneity. In contrast, the asymptotic decay is faster than exponential in subcritical media due to rapid chain extinction and in supercritical media due to the increasing probability of chain divergence. A formal asymptotic analysis of the problem in lumped geometry with an arbitrary fission neutron multiplicity confirms the existence of power-law tails at critical.