ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Anil K. Prinja, Patrick F. O’Rourke
Nuclear Science and Engineering | Volume 197 | Number 2 | February 2023 | Pages 189-211
Technical Paper | doi.org/10.1080/00295639.2022.2087830
Articles are hosted by Taylor and Francis Online.
The stochastic theory of neutron transport is extended to describe the cumulative distribution of fission numbers and deposited fission energy in a subvolume of a multiplying assembly. Solutions for the probability distributions are obtained using analytical approximations and Monte Carlo simulation in lumped geometry and in symmetric homogeneous and heterogeneous spheres. The results show the development of a power-law tail in the steady-state fission number and deposited energy distributions when the medium is critical, independent of the fission neutron multiplicity distribution and domain heterogeneity. In contrast, the asymptotic decay is faster than exponential in subcritical media due to rapid chain extinction and in supercritical media due to the increasing probability of chain divergence. A formal asymptotic analysis of the problem in lumped geometry with an arbitrary fission neutron multiplicity confirms the existence of power-law tails at critical.