ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Carlotta G. Ghezzi, Robert F. Kile, Nicholas R. Brown
Nuclear Science and Engineering | Volume 196 | Number 11 | November 2022 | Pages 1361-1382
Technical Paper | doi.org/10.1080/00295639.2022.2097466
Articles are hosted by Taylor and Francis Online.
This work analyzes the failure process of the silicon carbide (SiC) layer in tristructural isotropic (TRISO) during reactivity-initiated accident scenarios for a high-temperature gas-cooled reactor (HTGR) with BISON. Two cases are considered—a group control rod withdrawal (CRW) and a control rod ejection (CRE)—reproduced from a previous study. Failure probability is modeled using Weibull statistics, and worst-case scenario Weibull parameters are adopted to simulate the envelopes in BISON with a one-dimensional TRISO model. CRW scenario results are characterized by higher values of maximum energy deposition and final temperature and volumetric strain with respect to the CRE ones, but the latter have remarkably higher SiC failure probability, mainly due to the offset in strain rates between the two cases. This work also confirms the validity and conservatism of the performance envelopes produced in a previous work by replicating the envelope formulation using RELAP5-3D and RAVEN with a different sampling technique and obtaining consistent results. A sensitivity analysis using the Sobol variance decomposition method on SiC failure probability is then performed involving a set of inputs on both CRW and CRE. The two most important parameters are Weibull modulus and characteristic stress, and their relative importance depends on the specific case. The proposed interpretation of the results is that both energy deposition and strain rate influence the relative degree of importance of the failure parameters. Computation of 95% confidence intervals around worst-case scenario SiC failure probability values is also carried out for four different sets of Weibull parameters. A new criterion for SiC TRISO quality classification built upon safety-based ranges of Weibull parameters is proposed to be integrated in future Fuel-Production Quality Assurance Plans.