ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Carlotta G. Ghezzi, Robert F. Kile, Nicholas R. Brown
Nuclear Science and Engineering | Volume 196 | Number 11 | November 2022 | Pages 1361-1382
Technical Paper | doi.org/10.1080/00295639.2022.2097466
Articles are hosted by Taylor and Francis Online.
This work analyzes the failure process of the silicon carbide (SiC) layer in tristructural isotropic (TRISO) during reactivity-initiated accident scenarios for a high-temperature gas-cooled reactor (HTGR) with BISON. Two cases are considered—a group control rod withdrawal (CRW) and a control rod ejection (CRE)—reproduced from a previous study. Failure probability is modeled using Weibull statistics, and worst-case scenario Weibull parameters are adopted to simulate the envelopes in BISON with a one-dimensional TRISO model. CRW scenario results are characterized by higher values of maximum energy deposition and final temperature and volumetric strain with respect to the CRE ones, but the latter have remarkably higher SiC failure probability, mainly due to the offset in strain rates between the two cases. This work also confirms the validity and conservatism of the performance envelopes produced in a previous work by replicating the envelope formulation using RELAP5-3D and RAVEN with a different sampling technique and obtaining consistent results. A sensitivity analysis using the Sobol variance decomposition method on SiC failure probability is then performed involving a set of inputs on both CRW and CRE. The two most important parameters are Weibull modulus and characteristic stress, and their relative importance depends on the specific case. The proposed interpretation of the results is that both energy deposition and strain rate influence the relative degree of importance of the failure parameters. Computation of 95% confidence intervals around worst-case scenario SiC failure probability values is also carried out for four different sets of Weibull parameters. A new criterion for SiC TRISO quality classification built upon safety-based ranges of Weibull parameters is proposed to be integrated in future Fuel-Production Quality Assurance Plans.