ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Ilham Variansyah, Ryan G. McClarren
Nuclear Science and Engineering | Volume 196 | Number 11 | November 2022 | Pages 1280-1305
Technical Paper | doi.org/10.1080/00295639.2022.2091906
Articles are hosted by Taylor and Francis Online.
An extensive study of population control techniques (PCTs) for time-dependent and eigenvalue Monte Carlo (MC) neutron transport calculations is presented. We define PCT as a technique that takes a censused population and returns a controlled, unbiased population. A new perspective based on an abstraction of particle census and population control is explored, paving the way to improved understanding and application of the concepts. Five distinct PCTs identified from the literature are reviewed: simple sampling, splitting-roulette (SR), combing (CO), modified combing, and duplicate-discard (DD). A theoretical analysis of how much uncertainty is introduced to a population by each PCT is presented. Parallel algorithms for the PCTs, applicable for both time-dependent and eigenvalue MC simulations, are proposed. The relative performance of the PCTs based on run time and tally mean error or standard deviation is assessed by solving time-dependent and eigenvalue test problems. It is found that SR and CO are equally the most performing techniques, closely followed by DD.