ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Nicholas Crowder, Joomyung Lee, Abhinav Gupta, Kevin Han, Saran Bodda, Christopher Ritter
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S260-S277
Technical Paper | doi.org/10.1080/00295639.2022.2055705
Articles are hosted by Taylor and Francis Online.
Designing piping systems for nuclear power plants involves engineers from multiple disciplines (i.e., thermal hydraulics, mechanical engineering, and structural/seismic) and close coordination with the contractors who build the plant. Any design changes during construction need to be carefully communicated and managed with all stakeholders in order to assess risks associated with the design changes. To allow the quick assessment of building and piping design changes through a streamlined building-piping coupled analysis, this paper presents a novel interoperability solution that converts bidirectionally between building information models (BIMs) and pipe stress models. Any design changes during construction that are shown in an as-built BIM are automatically converted into a pipe stress model. Any further design changes due to building-piping interaction analyses are converted back to the BIM for the contractor and other designers to access the latest model. Two case studies are presented to illustrate the bidirectional conversion that allows an integrated coupled analysis of the building-piping system to account for their interactions.