ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Alisha Kasam-Griffith, Milos Atz, Tingzhou Fei, Zhaopeng Zhong, Michael Jarrett, Florent Heidet
Nuclear Science and Engineering | Volume 196 | Number 1 | October 2022 | Pages S38-S49
Technical Paper | doi.org/10.1080/00295639.2022.2031712
Articles are hosted by Taylor and Francis Online.
Successful operation of the Versatile Test Reactor (VTR) relies on satisfying stakeholder requirements and guaranteeing customer timelines. Although the VTR leverages proven sodium fast reactor technology, its mission as a test reactor introduces unique design and operational requirements. This paper covers the preliminary analysis and methodology development for two areas of the VTR core design related to the operational flexibility necessary for the testing mission. The first of these introduces a framework for assessing the feasibility of storing used driver fuel in the VTR shield region, which offers potential benefits to operations but may affect core reactivity and increased cooling time. A methodology to assess these impacts using neutronics and depletion calculations is demonstrated on three in-shield storage configurations. The second focus area highlights operational considerations and maximum residence time of the VTR control assemblies, which are critical to maintaining the irradiation environment necessary to deliver on the VTR mission. A preliminary methodology that assesses B-10 depletion and absorber rod swelling is demonstrated with the goal of informing future development. Together, these research activities illustrate how the early-stage VTR design is guided by anticipation of operating objectives.