ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Valerii Palkin, Eugene Maslyukov
Nuclear Science and Engineering | Volume 196 | Number 9 | September 2022 | Pages 1091-1100
Technical Paper | doi.org/10.1080/00295639.2022.2045146
Articles are hosted by Taylor and Francis Online.
The paper offers a double-cascade scheme for reducing the concentration of 232, 234, 236U isotopes in reprocessed uranium hexafluoride. The greatest decrease of the ratio between the masses of 236U and 235U is provided in the product of the first ordinary cascade enriched by 235U at the concentration of less than 20%. For this purpose, a special mode of stages operation is determined. Enrichment by 232, 234U is performed in the second ordinary cascade, which is fed by the product of the first cascade. After being purified from 232, 234U, the waste flow is diluted till the concentration of 235U is less than 5%. This paper describes the methodology for calculating the parameters of cascades with the stage separation factors correlating with gas centrifuges. This methodology served as a basis for a computational experiment. It is demonstrated that the output gained after the dilution meets the requirements of the American Society for Testing and Materials C996-20 specification for the commercial grade of low-enriched uranium hexafluoride in terms of 232, 234U isotopes. The content of 236U in it is several times less than during the direct enrichment of reprocessed uranium hexafluoride.