ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Valerii Palkin, Eugene Maslyukov
Nuclear Science and Engineering | Volume 196 | Number 9 | September 2022 | Pages 1091-1100
Technical Paper | doi.org/10.1080/00295639.2022.2045146
Articles are hosted by Taylor and Francis Online.
The paper offers a double-cascade scheme for reducing the concentration of 232, 234, 236U isotopes in reprocessed uranium hexafluoride. The greatest decrease of the ratio between the masses of 236U and 235U is provided in the product of the first ordinary cascade enriched by 235U at the concentration of less than 20%. For this purpose, a special mode of stages operation is determined. Enrichment by 232, 234U is performed in the second ordinary cascade, which is fed by the product of the first cascade. After being purified from 232, 234U, the waste flow is diluted till the concentration of 235U is less than 5%. This paper describes the methodology for calculating the parameters of cascades with the stage separation factors correlating with gas centrifuges. This methodology served as a basis for a computational experiment. It is demonstrated that the output gained after the dilution meets the requirements of the American Society for Testing and Materials C996-20 specification for the commercial grade of low-enriched uranium hexafluoride in terms of 232, 234U isotopes. The content of 236U in it is several times less than during the direct enrichment of reprocessed uranium hexafluoride.