ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Odmaa Sambuu, Van Khanh Hoang, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 196 | Number 3 | March 2022 | Pages 322-341
Technical Paper | doi.org/10.1080/00295639.2021.1980361
Articles are hosted by Taylor and Francis Online.
Since nuclear power plants were first developed over 80 years ago, most have had thermal reactors with enriched uranium as the main fuel. As a result, huge amounts of depleted uranium must be stockpiled and stored. Fast reactors operating in breed-and-burn (B&B) conditions are one potential approach to reducing the need for storage facilities to hold spent nuclear fuel and maximize the effective use of uranium resources. Sustaining B&B operating conditions depends on the choice of core materials. Here, we perform neutron balance analyses to determine the best combination of fuel and coolant material. We identify the features of the reactor core needed to maintain B&B operating mode by the amount of neutron loss from the core and coolant heat removal capability. Finally, we demonstrate that a large or small sodium-cooled fast reactor core with metallic or enriched nitride fuel, respectively, can sustain the chain reaction and B&B operation mode.