ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 196 | Number 2 | February 2022 | Pages 144-160
Technical Paper | doi.org/10.1080/00295639.2021.1968224
Articles are hosted by Taylor and Francis Online.
Methods for approximately accounting for the terms neglected in a finite (L’th-order) Legendre expansion of the scattering source in the transport equation are called transport corrections. This paper derives adjoint-based sensitivities of a neutron or gamma-ray transport response for problems that use diagonal, Bell-Hansen-Sandmeier (BHS), or n’th-Cesàro-mean-of-order-2 (Cesàro) transport corrections in the discrete-ordinates method. For diagonal and BHS transport corrections, there is a sensitivity to the L + 1ʹth scattering cross-section moment, and the sensitivity to nuclide and material densities requires this contribution. For the Cesàro transport correction, the sensitivities to the scattering cross section for the l’th moment are multiplied by a simple function of l and the scattering expansion order L. Numerical results for a keff problem and a fixed-source problem verify the derivation and implementation of the sensitivity equations into the SENSMG multigroup sensitivity code. The Cesàro transport correction yields inaccurate responses for both problems.