ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Stephen N. Gilliam, Jamie B. Coble, Steven E. Skutnik
Nuclear Science and Engineering | Volume 195 | Number 9 | September 2021 | Pages 965-976
Technical Paper | doi.org/10.1080/00295639.2021.1883399
Articles are hosted by Taylor and Francis Online.
In this paper, we investigate the possibility of plutonium quantification within the electrorefiner vessel of an electrochemical separation facility via the use of the (α,n) neutron signature from dissolved actinides. As a potential alternative means to traditional spontaneous fission tracking, such an analysis may provide a more reliable tracking capability of plutonium within systems that produce a mixed matrix sample that yields a large (α,n) source term relative to that of spontaneous fission. This assessment includes an evaluation and breakdown of nuclides within the refining unit to differentiate the source of neutrons and then the ratio between (α,n) emissions to total neutron emissions given a range of fuel parameters. Next, we provide an assessment of the origin of (α,n) neutrons in relation to multiple isotopes of plutonium to determine the potential of a direct tracking method. Preliminary results indicate that the (α,n) contribution for electrochemical systems is much higher than in its aqueous counterpart and rivals spontaneous fission yield in terms of magnitude. Furthermore, 238Pu is shown to be a main contributor to the (α,n) yield for the fuel examined in this study.