ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Hwanyeal Yu, Seongdong Jang, Yonghee Kim
Nuclear Science and Engineering | Volume 195 | Number 7 | July 2021 | Pages 766-777
Technical Paper | doi.org/10.1080/00295639.2020.1867435
Articles are hosted by Taylor and Francis Online.
Based on embedded analysis, an accurate pin power reconstruction (PPR) method is proposed for conventional nodal analysis. Unlike the common form function (FF) method, the new PPR method, named the embedded pin power reconstruction (EPPR) method, directly solves a two-group fixed-source problem that is defined with pinwise homogenized group constants (HGCs) and coarse-mesh incoming partial currents on the boundary. In the EPPR scheme, the pinwise HGCs including the pinwise discontinuity factor are predetermined from single-assembly lattice calculations, and the boundary partial currents are obtained from two-step nodal analyses. Two EPPR approaches are proposed: One is a 3×3 extended color-set configuration, and the other is a smaller one considering the half-thickness of the surrounding fuel assemblies. The performance of the EPPR methods is evaluated with various benchmark problems including partially mixed oxide–loaded pressurized water reactor cores, and the results are compared with the conventional FF method. Comprehensive results of this work demonstrate that the new EPPR method can provide much better accuracy than the conventional FF-based PPR method.