ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
A. M. M. Ali, Hanaa H. Abou-Gabal, Nader M. A. Mohamed, Ayah E. Elshahat
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 509-519
Technical Paper | doi.org/10.1080/00295639.2020.1839248
Articles are hosted by Taylor and Francis Online.
The neutron spectrum is an essential factor in making possible the increase of 233U isotope breeding from thorium fuel in an accelerator-driven subcritical (ADS) system; therefore, studying the effects of various moderators and coolants on 233U breeding is an important step in ADS performance. This study aims to evaluate the effect of using different moderators and coolants on the ADS system characteristics. Sodium, which was the most common coolant used in ADS reactors, was replaced by light water (LW) and graphite + CO2, separately. In this study, we used uranium nitride as the seed fuel associated with ThO2 as the blanket fuel for all cases. The Monte Carlo transport code MCNPX 2.7.0 was used to calculate neutronic parameters such as effective multiplication factor (Keff), power peaking factor (Pmax/Pav) in the radial direction of the ADS reactor core, actinide isotope evolution during fuel burnup, and power fraction from each fuel type for all cases. The results show that the utilization of graphite as the moderator with CO2 as the coolant allows more 233U production in thorium fuel compared with sodium and LW. On the other hand, LW showed great ability for plutonium and minor actinide transmutation and for energy generation.