ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Ryan G. McClarren
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 854-867
Technical Paper | doi.org/10.1080/00295639.2018.1565014
Articles are hosted by Taylor and Francis Online.
A novel method to compute time eigenvalues of neutron transport problems is presented based on solutions to the time-dependent transport equation. Using these solutions, we use the dynamic mode decomposition to form an approximate transport operator. This approximate operator has eigenvalues that are mathematically related to the time eigenvalues of the neutron transport equation. This approach works for systems of any level of criticality and does not require the user to have estimates for the eigenvalues. Numerical results are presented for homogeneous and heterogeneous media. The numerical results indicate that the method finds the eigenvalues that contribute the most to the change in the solution over a given time range, and the eigenvalue with the largest real part is not necessarily important to the system evolution at short and intermediate times.