ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Taro Ueki
Nuclear Science and Engineering | Volume 193 | Number 7 | July 2019 | Pages 776-789
Technical Paper | doi.org/10.1080/00295639.2018.1562779
Articles are hosted by Taylor and Francis Online.
It is known that the convergence of standardized time series (STS) to Brownian bridge yields standard deviation estimators of the sample mean of correlated Monte Carlo tallies. In this work, a difference scheme based on a stochastic differential equation is applied to STS in order to obtain a new functional statistic (NFS) that converges to Brownian motion (BM). As a result, statistical error estimation improves twofold. First, the application of orthonormal weighting to NFS yields a new set of asymptotically unbiased standard deviation estimators of sample mean. It is not necessary to store tallies once the updating of estimator computation is finished at each generation. Second, it becomes possible to assess the convergence of sample mean in an assumption-free manner by way of the comparison of power spectra of NFS and BM. The methodology is demonstrated for a challenging criticality problem based on Mennerdahl’s work, reactor tallies of representative correlation characteristics, and the delayed neutron fraction calculation of units of loosely coupled highly enriched uranium and 239Pu.