ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Taro Ueki
Nuclear Science and Engineering | Volume 193 | Number 7 | July 2019 | Pages 776-789
Technical Paper | doi.org/10.1080/00295639.2018.1562779
Articles are hosted by Taylor and Francis Online.
It is known that the convergence of standardized time series (STS) to Brownian bridge yields standard deviation estimators of the sample mean of correlated Monte Carlo tallies. In this work, a difference scheme based on a stochastic differential equation is applied to STS in order to obtain a new functional statistic (NFS) that converges to Brownian motion (BM). As a result, statistical error estimation improves twofold. First, the application of orthonormal weighting to NFS yields a new set of asymptotically unbiased standard deviation estimators of sample mean. It is not necessary to store tallies once the updating of estimator computation is finished at each generation. Second, it becomes possible to assess the convergence of sample mean in an assumption-free manner by way of the comparison of power spectra of NFS and BM. The methodology is demonstrated for a challenging criticality problem based on Mennerdahl’s work, reactor tallies of representative correlation characteristics, and the delayed neutron fraction calculation of units of loosely coupled highly enriched uranium and 239Pu.