ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Kelly L. Rowland, Cory D. Ahrens, Steven Hamilton, R. N. Slaybaugh
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 233-252
Technical Paper | doi.org/10.1080/00295639.2018.1509569
Articles are hosted by Taylor and Francis Online.
The Lagrange Discrete Ordinates (LDO) equations, developed by Ahrens as an alternative to the traditional discrete ordinates formulation, have been implemented in Denovo, a three-dimensional radiation transport code developed by Oak Ridge National Laboratory. The LDO equations retain the formal structure of the classical discrete ordinates equations but treat particle scattering in a different way. Solutions of the LDO equations have an interpolatory structure such that the angular flux can be naturally evaluated at directions other than the discrete ordinates used in arriving at the solutions, and the ordinates themselves may be chosen in a strategic way for the problem under consideration. Of particular interest is that the LDO equations have been shown to mitigate ray effects at increased angular resolutions. In this paper we present scalar flux solutions of the LDO equations for a small number of test cases of interest and compare the results against flux solutions generated using standard quadrature types. The LDO equations’ flux solutions were found to be comparable to those resultant from the standard quadrature types in value; results from the LDO equations were also found to be commensurate with those of standard quadrature types when comparing the flux solutions in the context of the experimental benchmark test case examined.