ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Kelly L. Rowland, Cory D. Ahrens, Steven Hamilton, R. N. Slaybaugh
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 233-252
Technical Paper | doi.org/10.1080/00295639.2018.1509569
Articles are hosted by Taylor and Francis Online.
The Lagrange Discrete Ordinates (LDO) equations, developed by Ahrens as an alternative to the traditional discrete ordinates formulation, have been implemented in Denovo, a three-dimensional radiation transport code developed by Oak Ridge National Laboratory. The LDO equations retain the formal structure of the classical discrete ordinates equations but treat particle scattering in a different way. Solutions of the LDO equations have an interpolatory structure such that the angular flux can be naturally evaluated at directions other than the discrete ordinates used in arriving at the solutions, and the ordinates themselves may be chosen in a strategic way for the problem under consideration. Of particular interest is that the LDO equations have been shown to mitigate ray effects at increased angular resolutions. In this paper we present scalar flux solutions of the LDO equations for a small number of test cases of interest and compare the results against flux solutions generated using standard quadrature types. The LDO equations’ flux solutions were found to be comparable to those resultant from the standard quadrature types in value; results from the LDO equations were also found to be commensurate with those of standard quadrature types when comparing the flux solutions in the context of the experimental benchmark test case examined.