ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
William J. Walters, Nathan J. Roskoff, Alireza Haghighat
Nuclear Science and Engineering | Volume 192 | Number 1 | October 2018 | Pages 21-39
Technical Paper | doi.org/10.1080/00295639.2018.1497395
Articles are hosted by Taylor and Francis Online.
The Real-time Analysis for Particle transport and In-situ Detection (RAPID) code uses a unique, extremely fast, fission matrix–based methodology to compute the eigenvalue, and three-dimensional, pinwise fission source distribution for reactor, spent fuel pool, and spent fuel cask problems. In this paper, the RAPID fission matrix method is described and analyzed for application to several large pressurized water reactor problems, based on the Organisation for Economic Co-operation and Development/Nuclear Energy Agency Monte Carlo Performance Benchmark problem. In the RAPID methodology, fission matrix coefficients precalculated using the Serpent Monte Carlo code, are then coupled together and solved for different core arrangements. A boundary correction method is used to obtain more accurate fission matrix values near the radial and axial reflectors. Eigenvalues and fission source distributions are compared between RAPID and Serpent reference calculations. In most cases, the eigenvalue differences between methods are less than 10 pcm. For a uniform core model, pinwise fission distributions between the methods differ by a root-mean-square value of , compared to a Serpent uncertainty of . The pinwise, axially dependent (100 axial levels) differences are , compared to a similar Serpent uncertainty of . To achieve these levels of uncertainty, the RAPID calculations are over 2500 times faster than Serpent, not counting the precalculation time.