ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Qingmin Zhang, Zhigang Hu, Bangjie Deng, Mengxuan Xu, Yuhang Guo
Nuclear Science and Engineering | Volume 186 | Number 3 | June 2017 | Pages 293-302
Technical Paper | doi.org/10.1080/00295639.2016.1273619
Articles are hosted by Taylor and Francis Online.
The self-powered neutron detector (SPND) is popularly used as an in-core neutron flux monitor in reactors due to its simple structure, self-powered feature. However, its response delay needs compensation to obtain the actual real-time neutron flux for reactor control and protection. In this paper, a simple iterative method for compensating SPND response delay is proposed as well as noise filtering. Two favorable noise filtering methods were compared, and then, the moving average filter was chosen. The governing differential equations were established according to decay mechanism, and then, iterative compensation relations for delay compensation were established by discretization with simplicity and flexibility. The test result shows that the compensated response delay for a prompt jump of neutron flux is only 0.9 s, indicating its effectiveness. Furthermore, the dependence on initial conditions and sampling time interval was also studied, indicating that two initial condition determination modes for two typical detector start-up situations can be chosen correspondingly for delay minimization and critical sampling with a time interval of about 0.7 s, which shows consistency with the Von Neumann stability analysis. Finally, our method has been compared with the Z-transform method and verified with measured current, which showed its better performance.