ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
S. Santandrea, D. Sciannandrone, R. Sanchez, L. Mao, L. Graziano
Nuclear Science and Engineering | Volume 186 | Number 3 | June 2017 | Pages 239-276
Technical Paper | doi.org/10.1080/00295639.2016.1273634
Articles are hosted by Taylor and Francis Online.
In this paper we describe some recent developments in the Method of Characteristics (MOC) for three-dimensional (3D) extruded geometries in the nuclear reactor analysis code APOLLO3®. We discuss the parallel strategies implemented for the transport sweep of the MOC solver in the OpenMP framework, and introduce the 3D version of the DPN operator that is customarily used in APOLLO2 to accelerate MOC convergence. In order to provide good physical results, we have also coupled the MOC with the self-shielding environment of APOLLO3®. We describe, in particular, the coupling techniques necessary to implement a full subgroup cross-section self-shielding method and a specialized version of the Tone self-shielding technique. In this framework, we use part of the tracking method used for the 3D calculation to provide the two-dimensional Collision Probability Method (CPM) coefficients necessary to produce the self-shielding calculations. We will show some important computational speedups also in the CPM of APOLLO3® with respect to the APOLLO2 CPM equivalent implementation, including the parallelization issue. Finally, we will compare our approach toward a Monte Carlo calculation of a fast breeder reactor hexagonal assembly representing a fertile-fissile interface.