ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Imre Pázsit, Cristina Montalvo, Henrik Nylén, Tell Andersson, Augusto Hernández-Solís, Petty Bernitt Cartemo
Nuclear Science and Engineering | Volume 182 | Number 2 | February 2016 | Pages 213-227
Technical Paper | doi.org/10.13182/NSE15-14
Articles are hosted by Taylor and Francis Online.
Core-barrel motion (CBM) surveillance and diagnostics, based on the amplitude of the peaks of the normalized auto power spectral densities (APSDs) of the ex-core neutron detectors, have been performed and continuously developed in Sweden and were applied for monitoring of the three PWR units, Ringhals 2 to 4. From 2005, multiple measurements were taken during each fuel cycle, and these revealed a periodic behavior of the 8-Hz peak of the beam-mode motion: the amplitude increases within the cycle and returns to a lower value at the beginning of the next cycle. The work reported in this paper aims to clarify the physical reason for this behavior. A combination of a mode separation method in the time domain and a nonlinear curve-fitting procedure of the frequency spectra revealed that two types of vibration phenomena contribute to the beam-mode peak. The lower frequency peak around 7 Hz in the ex-core detector APSDs corresponds to the CBM, whose amplitude does not change during the cycle. The higher frequency peak around 8 Hz arises from the individual vibrations of the fuel assemblies, and its amplitude increases monotonically during the cycle. This paper gives an account of the work that has been made to verify the above hypothesis.