ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Glen A. Warren, Kevin K. Anderson, Jonathan Kulisek, Yaron Danon, Adam Weltz, A. Gavron, Jason Harris, Trevor N. Stewart
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 264-273
Technical Paper | doi.org/10.13182/NSE13-71
Articles are hosted by Taylor and Francis Online.
Improved nondestructive assay of isotopic masses in used nuclear fuel would be valuable for nuclear safeguards operations associated with the transport, storage, and reprocessing of used nuclear fuel. Our collaboration is examining the feasibility of using lead slowing-down spectrometry techniques to assay the isotopic fissile masses in used nuclear fuel assemblies. We present the application of our analysis algorithms to measurements conducted with a lead spectrometer. The measurements involved a single fresh fuel pin and discrete 239Pu and 235U samples. We are able to describe the isotopic fissile masses with root-mean-square errors over seven different configurations to 6.3% for 239Pu and 2.7% for 235U. Significant effort is yet needed to demonstrate the applicability of these algorithms for used-fuel assemblies, but the results reported here are encouraging in demonstrating that we are making progress toward that goal.