ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
A. V. Campise
Nuclear Science and Engineering | Volume 7 | Number 2 | February 1960 | Pages 104-110
Technical Paper | doi.org/10.13182/NSE60-A29078
Articles are hosted by Taylor and Francis Online.
The neutron balance of a reactor system is probably the most important single quantity to be obtained from an analysis of static core physics. In a heterogeneous reactor configuration, an accurate knowledge of the different reaction rates must be obtained by first studying the unit cell. The results for the unit cell are used in the homogenization of the reactor lattice so that a multigroup, multiregion reactor program may be used to investigate the reactions rates of the reactor system. A study was made of the ability of the Sn form of the neutron Transport Equation to describe accurately the thermal neutron flux distribution in a unit cell. The uncertainties introduced into the problem by spectrum hardening in heterogeneous cells were minimized by confining most of the comparison of theory with experiment to natural uranium rods in diphenyl and D2O. A slightly enriched uranium slab in a water lattice was used for comparisons of results published in reference (1). Results are evaluated on the basis of the Sn method's ability adequately to calculate the spatial variation of the thermal flux distribution when compared with experiment. Excellent agreement was obtained for the Sn calculations.