ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
R. E. Leuze, R. D. Baybarz, Boyd Weaver
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 252-258
Solvent Extraction Chemistry Symposium. Part II. | doi.org/10.13182/NSE63-A28887
Articles are hosted by Taylor and Francis Online.
The Tramex process, in which trivalent actinides are extracted into tertiary amine hydrochloride from concentrated lithium chloride solution, has been developed for isolation of transplutonium elements from irradiated High Flux Isotope Reactor targets. Tests made in laboratory scale mixer-settlers gave americium losses of about 0.01 % and fission product decontamination factors of equal to or greater than 104. Nickel was the only contaminant that followed the transplutonium elements through the Tramex process. No serious radiation induced effects were noted in 1- to 10-ml batch extraction tests at activity levels up to the proposed processing level of 10 w/liter. A process was developed for splitting transplutonium elements into two fractions. Transcurium elements are extracted into mono-2-ethyl-hexyl phenyl phosphonic acid from dilute hydrochloric acid while americium-curium and nickel contaminant from the Tramex process remain in the aqueous phase. Demonstration in a 10-ml batch countercurrent extraction with simulated feed containing tracers gave a californium loss of about 0.1% and an americium decontamination factor of 103. Important variables for both extraction processes are discussed.