ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
N. K . Ganguly, F. C. Cobb, A. W. Waltner
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 223-226
Technical Paper | doi.org/10.13182/NSE63-A28883
Articles are hosted by Taylor and Francis Online.
Measurements of the diffusion parameters of heavy water were made using a 1 Mev Van de Graaff accelerator utilizing the Be9(d, n) reaction under pulsed operation. The measurements were made at temperatures of 10°, 20°, 31°, 40°, and 50°C for buckling values ranging from 0.063 cm−2 to 0.100 cm−2. The decay of the neutron density was measured by a BF3 counter, located under the moderator container, in conjunction with a 26-channel time analyzer. The meanlife for each buckling was computed using Peierls' method; and values of the diffusion parameters were computed by the method of least squares. The value of the diffusion constant, (2.00 ± 0.04) × 105 cm2/sec at 10°C, agreed within the limits of experimental error with that found by Raievski and Horowitz, who used the modulated source method. The coefficient of the B4 term, usually referred to as the diffusion cooling coefficient, was found to be (3.72 ± 0.50) × 105 cm4/ sec as compared with (3.5 ± 0.8) × 105 cm4/sec as reported by Sjostrand in 1959.