ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
W. W. Godsin
Nuclear Science and Engineering | Volume 8 | Number 4 | October 1960 | Pages 340-345
Technical Paper | doi.org/10.13182/NSE60-A28864
Articles are hosted by Taylor and Francis Online.
An irradiation capsule for high-temperature fuel irradiations has been developed to permit constant temperature control over a range of about ±35% of design power. Control is achieved by the variation in thermal conductivity of a binary gas mixture in a control annulus located between the test specimen and the capsule coolant. For the binary mixture, helium, which is a high-thermal conductivity gas, and a gas of lower conductivity, such as neon, nitrogen, or argon, may be used. The control method is unaffected by time or radiation damage. In-pile operation of capsules using this method of control has demonstrated that the desired temperature may be controlled to within ±25°F automatically, and probably more closely if manually controlled. The automatic control system also protects the capsule from temperature overshoot during a fast reactor recovery following a scram.