ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
W. W. Godsin
Nuclear Science and Engineering | Volume 8 | Number 4 | October 1960 | Pages 340-345
Technical Paper | doi.org/10.13182/NSE60-A28864
Articles are hosted by Taylor and Francis Online.
An irradiation capsule for high-temperature fuel irradiations has been developed to permit constant temperature control over a range of about ±35% of design power. Control is achieved by the variation in thermal conductivity of a binary gas mixture in a control annulus located between the test specimen and the capsule coolant. For the binary mixture, helium, which is a high-thermal conductivity gas, and a gas of lower conductivity, such as neon, nitrogen, or argon, may be used. The control method is unaffected by time or radiation damage. In-pile operation of capsules using this method of control has demonstrated that the desired temperature may be controlled to within ±25°F automatically, and probably more closely if manually controlled. The automatic control system also protects the capsule from temperature overshoot during a fast reactor recovery following a scram.