ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
C. C. Burwell, R. M. Bidwell, R. P. Hammond, J. E. Kemme, and B. J. Thamer
Nuclear Science and Engineering | Volume 14 | Number 2 | October 1962 | Pages 123-134
Technical Paper | doi.org/10.13182/NSE62-A28111
Articles are hosted by Taylor and Francis Online.
The first molten plutonium reactor experiment (LAMPRE I) uses a liquid fuel alloy of plutonium and iron contained in small test tube shaped capsules of tantalum and cooled by liquid sodium. The development of compatible materials for the fuel, container, and coolant has been an important phase of the experiment. This paper reports on the methods of corrosion testing (developed for the work) and the results of experiments on the composition of the fuel. Both mass transfer attack and intergranular corrosion were found to be significant. Mass transfer was found to be controllable through the use of fuel additives which presumably formed protective layers on the tantalum. Intergranular corrosion was found to be strongly influenced by fuel composition and by container properties. All levels of calcium and magnesium in the fuel were found to be detrimental. Additives which were effective in minimizing mass transfer were found to be not always effective against intergranular attack. Testing methods included tracer techniques, radioautography, chemical analysis, and bend testing.