ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. M. Fletcher, C. J. Hardy
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 421-427
Technical Paper | doi.org/10.13182/NSE63-A26554
Articles are hosted by Taylor and Francis Online.
The extraction by TBP of nitrato complexes of metals occurs mainly by the formation of nonconducting complexes in which the oxygen of the PO group is covalently bound to the metal, e.g., P==0 → M. In other TBP complexes, this O atom is bonded to hydrogen, e.g., to a hydrogen atom of water, of an undissociated acid, or of the hydronium ion. Three features in the extraction of metal nitrates at trace concentration from nitric acid concentrations >7M which await interpretation are the second increase in the distribution coefficient, DM; the decrease in the magnitude of this second increase as the fraction of inert diluent increases; and the change in the temperature coefficient of DM from negative to positive. Extraction (i) by bonding of the phosphoryl oxygen to an aquo group (of the aquonitrato metal complex), or (ii) by nitrato acids, do not explain these features. Measurements of the conductivity and viscosity of 100% TBP-HNO3-H2O phases are consistent with the existence of three steps as the ratio HNO3/TBP increases. In the first step, ions, postulated as (TBP·H2O·H)3O+ and (TBP·H)2(H2O·H)O+, are formed. In the second step, the molar conductivity decreases as the predominant species becomes TBP·HNO3. In the third step the molar conductivity and the water content increase by the formation of ions such as (TBP·H)(H2O·H)(HNO3·H)O+, in which a nitric acid molecule is bonded to the hydronium ion: the second increase in DM for certain metals is explained by there being similar bonding, through the oxygen of a nitrato group of the metal complex, in place of the HNO3 in this complex ion when HNO3/TBP is >1. The positive temperature coefficient shown by this form of extraction of metal nitrates is also shown in this region by the extraction of nitric acid, the conductivity, and the water content.