ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
D. B. MacMillan, M. L. Storm
Nuclear Science and Engineering | Volume 16 | Number 4 | August 1963 | Pages 369-380
Technical Paper | doi.org/10.13182/NSE63-A26547
Articles are hosted by Taylor and Francis Online.
The applicability of the zero-neutron-lifetime approximation in describing the effects of neutron-level fluctuations is investigated for reactivities near and above prompt critical. It is concluded that meaningful statistical information can be obtained by the zero-lifetime model above prompt critical, and an approximate procedure for joining this model to a deterministic finite-lifetime model is suggested. Illustrative examples, comparing numerical results obtained by this approximation with more accurate finite-lifetime statistical calculations, are presented. In addition, application is made to Los Alamos and Livermore superprompt-critical burst experiments which fall outside of the practical computing range of the finite-lifetime model described in Part II. It is found that the agreement of calculation and experiment is as good as was found previously for a set of subprompt-critical burst experiments.