ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
Amos Norman, P. Spiegler
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 213-217
Technical Paper | doi.org/10.13182/NSE63-A26502
Articles are hosted by Taylor and Francis Online.
A charged particle passing through water creates a thermal spike, a region of high temperature along the track. The thermal spike expands explosively, thus producing a pressure wave, and then breaks up because of surface tension into discrete regions of water vapor and hydrogen gas. These vapor-gas microbubbles can act as nucleation centers in superheated or gas supersaturated solutions. Calculations based on this thermal spike model are presented of the total energy and minimum linear energy transfer (LET) required to form nucleation centers of a given size, and the calculations are compared to published data on the radiation nucleation of superheated and supersaturated aqueous solutions. Calculations are also presented of the pressure created by the rapid expansion of the thermal spike, and of the lifetime of the vapor-gas microbubbles under conditions in which they collapse. The calculations cover an LET range of 0.1 to 10 Mev/µ or, approximately, from the maximum LET of recoil protons in water to the maximum LET of fission fragments in water. The calculations are carried out for a liquid pressure of one atmosphere and two temperature conditions : the minimum temperature at which vapor nuclei of given size will grow and 0°C. The effect of high pressures and temperatures on the radiation nucleation of vapor bubbles is discussed briefly in terms of the foam limit.