ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
L. J. Esch
Nuclear Science and Engineering | Volume 16 | Number 2 | June 1963 | Pages 196-201
Technical Paper | doi.org/10.13182/NSE63-A26499
Articles are hosted by Taylor and Francis Online.
The neutron diffusion length in paraffin has been measured by a static technique in the temperature range from 60°C to 130°C. The neutron transport cross section was abstracted from the measured diffusion length. A semiempirical prescription describing the temperature dependence of the neutron transport cross section in paraffin and polyethylene has been derived. The derivation is based on that of the Radkowsky prescription for water. A calculation of the transport cross section in paraffin and polyethylene has been carried out in the temperature range from 20°C to 125°C. The measured transport cross section in paraffin has been compared with that predicted by the prescription. The values agree within 3%. A 14% difference between the values for paraffin and those for water gives credence to the assumption that calculations of the characteristics of plastic moderated critical assemblies can be improved by the use of the proper prescription.