ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
N. Kattchee, W. V. Mackewicz
Nuclear Science and Engineering | Volume 16 | Number 1 | May 1963 | Pages 31-38
Technical Paper | doi.org/10.13182/NSE63-A26476
Articles are hosted by Taylor and Francis Online.
Local convective heat transfer coefficients for a surface with integral boundary-layer turbulence promoters were determined by conducting naphthalene-to-air mass transfer tests and invoking the heat transfer-mass transfer analogy. The turbulence promoters were machined into the convex surface of an annulus. The experimental results were normalized relative to mass transfer coefficients on a smooth surface with parallel flow. On the faces of the turbulence promoters local heat transfer coefficients up to six times the smooth surface value were encountered. High transfer coefficients were found on the upstream and top faces. Coefficient values on the downstream surfaces were low and independent of geometry. Corner areas showed heat transfer coefficients lower than those for a smooth surface with parallel flow. The data from surfaces between two turbulence promoters were correlated in terms of a dimensionless location index. A broad heat transfer coefficient peak of 2.4 times the smooth surface magnitude was found 4 turbulence promoter heights downstream from a promoter. Each test also showed a narrow coefficient peak at the point about 0.5 height preceding a turbulence promoter. When correlated in this manner, the results revealed a unique generalized distribution of the transfer coefficient for surfaces with boundary layer turbulence promoters of rectangular cross section. The upstream and downstream regions of boundary layer separation were independent of the dimensions of the turbulence promoters. The estimated error for this series of tests was approximately ±20 % of the maximum relative transfer coefficient values.